

Stable Hierarchical Routing for Operational LEO Networks

Yuanjie Li, **Lixin Liu**, Hewu Li, Wei Liu, Yimei Chen, Jianping Wu, Qian Wu, Jun Liu, Zeqi Lai

*figure source: Geespace

Low Earth Orbit (LEO) Mega-Constellation

8 SHELLS

High-speed Internet for the "unconnected" 2.7B users

Are the LEO satellites networked?

Inter-satellite lasers are currently only used if the satellite cannot see the user terminal and ground station simultaneously. Over ocean, it's all lasers.

Inter-satellite links (ISLs) are not activated at scale

Are the LEO satellites networked?

Inter-satellite links (ISLs) are not activated at scale

Why not networked satellites?

Chaotic and exhaustive network dynamics

Routing in space is unstable!

This work

- What does LEO network dynamics look like?
- How does dynamics affect satellite routing at scale?
- How to stabilize large-scale routing over dynamics?

Low-Earth-Orbit Dynamics

Ideal Low-Earth-Orbit Dynamics

1. Space-Terrestrial Dynamics

Asynchronous mobility between satellite and Earth \rightarrow Frequent GSL churn

Ideal Low-Earth-Orbit Dynamics

2. Intra-Orbital-Shell Dynamics

Homogeneous satellites \rightarrow Mild ISL dynamics in ideal cases

Ideal Low-Earth-Orbit Dynamics

3. Inter-Orbital-Shell Dynamics

Heterogeneous satellites \rightarrow Chaotic ISL dynamics even in ideal cases

Real Low-Earth-Orbit Dynamics

Orbital imperfections

- Orbital drags
- Orbital maneuvers

Real Low-Earth-Orbit Dynamics

Orbital imperfections

- Orbital drags
- Orbital maneuvers
- Orbital failures

INVESTING IN SPACE

SpaceX to lose as many as 40 Starlink satellites due to space storm

PUBLISHED WED, FEB 9 2022-10:53 AM EST | UPDATED WED, FEB 9 2022-6:42 PM EST

share f 🍠 in 🕯

SpaceX rocket accident leaves the company's Starlink satellites in the wrong orbit

JULY 13, 2024 · 3:27 AM ET

Partial deployments

Starlink Shell 3

"A Networking Perspective on Starlink's Self-Driving LEO Mega-Constellation", MobiCom 2023

Implications for Routing

Implications for Routing

Flat routing?

Proactive routing

Link state/Distance vector, SDN

Global routing updates

Excessive global route exchanges \otimes Transient routing inconsistencies \otimes

Reactive routing

AODV, DSR

Exhaustive route request flooding ⁽²⁾ Frequent route cache expiry ⁽²⁾

SOTA: introducing predictability in routing

Satellite trajectories are predictable

Is it enough for optional LEO networks?

Flat predictive routing?

Unpredictable and random orbital imperfections \otimes

Hierarchical routing?

- Prerequisite: well-defined, stable routing domains
- Not readily available in **extremely mobile** LEO networks 🛞

How to stabilize hierarchical routing in dynamic LEO networks?

Our work: Earth-centric geographic paradigm

Earth's geographic locations are invariant of extreme satellite mobility

An Earth-Centric Stable LEO Routing Hierarchy

Decouple, localize, and mask LEO dynamics hierarchically

Tier 1: terrestrial network

Tier 2: orbital shells T

Tier 3: orbits

• Use geographic routing to decouple from fast-changing satellites

Logical routing

• Use geographic routing to decouple from fast-changing satellites

Logical routing

• Use geographic routing to decouple from fast-changing satellites

Logical routing

Geographic routing

• Use geographic routing to decouple from fast-changing satellites

Logical routing

Geographic routing

No routing updates when satellites move

How to lay out the geographic service areas?

Latitude-longitude cells

Hexagon cells (Uber H3) Space-filling curve (Google S2)

• How to lay out the geographic service areas?

Satellite-oblivious and complex mapping between satellites and terrestrial users

cells (Uber H3) (Google S2)

• Simplify satellite's runtime mapping

• Simplify satellite's runtime mapping

Satellite's runtime sub-point linearly changes

• Stabilize routing distance between satellites

Stabilize routing distance between satellites

$$\Delta \alpha_t^{S,D} \equiv \Delta \alpha_0^{S,D} = \alpha_0^S - \alpha_0^D$$
$$\Delta \gamma_t^{S,D} \equiv \Delta \gamma_0^{S,D} = \gamma_0^S - \gamma_0^D$$

Time-invariant coordinate distance enable stable routing

Intra-Orbital-Shell Routing for Earth

• Stable and ISL churn resilient geographic routing

Inter-Orbital-Shell Routing for Earth When will we need it?

Inter-Orbital-Shell Routing for Earth

- Only when the nodes can not be covered by one shell
 - Source or destination in high-latitude areas (rare in reality)

Inter-Orbital-Shell Routing for Earth

- Only when the nodes can not be covered by one shell
 - Source or destination in high-latitude areas (rare in reality)

Practical Deployment

• Take IPv6 as an example

What IP address does Starlink provide?

public IPv4 Addresses. Starlink supports native IPv6 across all Starlink routers, kit versions, and service plans. All IPv6 compatible Starlink router clients are assigned IPv6 addresses.

Practical Deployment

• Take IPv6 as an example

Evaluation Highlights

81-1489x routing updates ↓

Near optimal routing

Evaluation Highlights

Resilient to ISL failures

Conclusion

• Multi-dimensional and exhaustive LEO dynamics in reality

- New challenges that terrestrial routing never encounter
- SHORT: Stable hierarchical geographic routing
 - Earth as the anchor to decouple from fast-moving LEO satellites
- Operational complexities and imperfections matter for satellite networking
 - More practical solutions needed toward Internet from space at scale

Thank you!

Contact: yuanjiel@tsinghua.edu.cn llx22@mails.tsinghua.edu.cn

*figure source: Geespace